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“mind reading” “thought identification”

What can we really do!?

“prediction” “decoding”




Let’s Read Some Brains

|) Training
2) Test




|) Training

Face-selective cortex
(Fusiform Face Area, FFA)
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|) Training
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“brain reading” “classification”

Multi Voxel-Pattern Analysis
(MVPA)

“prediction” “decoding”




Univariate vs. Multivariate

* Classic fMRI analyses = univariate

— Each voxel considered independently

* Multivariate
— Responses of voxels considered jointly

— Pattern of response
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Euclidean Distance
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Correlation
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Support Vector Machine (SVM)
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Linear Classifiers

Euclidean distance
Correlation
Linear SVM

Fisher Least Discriminant Analysis

Neural networks (without hidden layer)

Gaussian Naive Bayes Classifiers

Non-linear classifiers increase risk of overfitting




Object representations in ventral
temporal cortex [Haxby et al. (2001)]

* Participants viewed
blocks of images from
8 categories

e |-back task

* Split-half correlation
analysis




Correlation
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Decoding Accuracy

Table 1. Accuracy of identification of the category being viewed based on the patterns of response evoked in ventral temporal cortex. Accuracies are the
percentage of comparisons between two categories that correctly identified which category was being viewed.

Volume

Region (cm? + SE)

Identification accuracy (%)

Faces

Houses

Cats

Bottles

Scissors

Shoes

Chairs

Scrambled

All ventral temporal 229+28
object-selective cortex
Minus regions that were
maximally responsive to
categories being compared
Regions maximally
responsive to:
Faces
Houses
Cats
Small objects

15418
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26 04
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Differs from chance (50%): *, P < 0.05; **, P < 0.01; ***, P < 0.001.




Decoding Orientation in Early Visual
Cortex [Kamitani and Tong (2005)]




Highly accurate decoding of orientation

LN (S2, VIV
N . |, 400 voxels)

Training on day 1
Test on day 2
S2

)

31 d apart 40 d apart

(V1/V2 400 voxels)




Decoding Attended Orientation

Training b Attend to 45° Attend to 135°

45° Vs. 135° N3¢ (88, vi-v4
1.7} X\ 800 voxels)

‘ [ = (mean of S1-S4)

Single gratings

Test
Attend to 45°_ or 135°

____________________ i
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Percentage correct




Limitations of Early Decoding Studies

Kamitani and Tong (2005)

e Restricted stimulus domains

— Oriented lines Z////Q M

Haxby et al (2001
o lle's By s ey

— Small number of selected categories

* No decoding of novel stimuli or categories
[but see Spiridon and Kanwisher(2002)]




Model-based approach to decoding
[Kay et al (2008)]

|) Characterize relationship between visual stimuli and fMRI
activity (i.e. build a model)
—  Complex, natural visual images

—  Early retinotopic visual cortex

2) Measure fMRI activity to one of many possible novel
images

3) Compare actual activity to predicted activity for full set of
novel images to determine which image was viewed




Large gray-scale images

20° / 500 px




) Build 2 Model

Stage 1: model estimation
Estimate a receptive-field model for each voxel
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RF model for one voxel

Subject S1, voxel 42205, area V1
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Novel Image to be Identified

Stage 2: image identification
(1) Measure brain activity for an image
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Measured voxel
activity pattern




Compare observed to predicted activity

(2) Predict brain activity for a set of images using receptive-field models

- DBEE0 —» -~/

Voxel number

Set of Receptive-field models Predicted voxel
images for multiple voxels activity patterns

(3) Select the image (¥ ) whose predicted brain activity is most similar to
the measured brain activity




Performance
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Additional results

* Works on single trials

* Not just retinotopy

* Accurate even with long delay between
model fitting and testing




Limitations of Kay et al.

Still requires comparison with set of candidate images

Will likely fail with more homogeneous images (e.g. two
faces)

Whole image comparison

— What about same central object on different
backgrounds?

How sensitive to fixation differences!?
Novel subjects?
Visual perception is dynamic




Visual Image Reconstruction
[Miyawaki et al (2008)]

* Model based decoding

* Characterize relationship between activity
and contrast of local image patches

* Use activity to predict contrast within
Image




Presented image
(10 x 10 patches)

Local image bases
(elements)

Reconstructed
contrast pattern

fMRI signals

Multi-voxel
pattern
decoders

Multi-scale
image
representation
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Reconstructions
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Limitations of Miyawaki et al

* Similar limitations to Kay et al.
* Simple, non-natural stimuli

* Small image size

For extension of Kay et al. into reconstruction, see
Naselaris et al (2009)




“mind reading” “thought identification”

What can we really do!?

“prediction” “decoding”
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Resources

* SVM toolbox

— http://www.csie.ntu.edu.tw/~cjlin/libsvm/
* Python MVPA toolbox

— http://www.pymvpa.org/

 Princeton MVPA toolbox

— http://code.google.com/p/princeton-mvpa-
toolbox/







